Control Techniques to Eliminate Voltage Emergencies in High Performance Processors

نویسندگان

  • Russ Joseph
  • David M. Brooks
  • Margaret Martonosi
چکیده

Increasing focus on power dissipation issues in current microprocessors has led to a host of proposals for clock gating and other power-saving techniques. While generally effective at reducing average power, many of these techniques have the undesired side-effect of increasing both the variability of power dissipation and the variability of current drawn by the processor. This increase in current variability, often referred to as the dI/dt problem, can cause supply voltage fluctuations. Such voltage fluctuations lead to unreliable circuits if not addressed, and increasingly expensive chip packaging techniques are needed to mitigate them. This paper proposes and evaluates a methodology for augmenting packaging techniques for dI/dt with microarchitectural control mechanisms. We discuss the resonant frequencies most relevant to current microprocessor packages, produce and evaluate a “dI/dt stressmark” that exercises the system at its resonant frequency, and characterize the behavior of more mainstream applications. Based on these results plus evaluations of the impact of controller error and delay, our microarchitectural control proposals offer bounds on supply voltage fluctuations, with nearly negligible impact on performance and energy. With the ITRS roadmap predicting aggressive drops in supply voltage and power supply impedances in coming chip generations, novel voltage control techniques will be required to stay on track. Our microarchitectural dI/dt controllers represent a step in this direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eliminating Voltage Emergencies via Microarchitectural Voltage Control Feedback and Dynamic Program Modification

As processor clock gating becomes more and more prevalent, the resulting processor current fluctuations increase the chance of the power supply violating its operating voltage range. Today, low-power research has focused on hardware mechanisms to reduce the chances of these voltage emergencies. While these hardware solutions are very effective at reducing di/dt to an acceptable range, they do s...

متن کامل

Implementation and Critical Investigation on Modulation Schemes of Three Phase Impedance Source Inverter

New control circuits and algorithms are frequently proposed to control the impedance (Z) source inverter in efficient way with added benefits. As a result, several modified control techniques have been proposed in recent years. Although these techniques are clearly superior to the simple boost control method which was initially proposed along with the Z-source inverter (ZSI), little or conf...

متن کامل

A System-Level View of Voltage Noise in Production Processors

Parameter variations have become a dominant challenge in microprocessor design. Voltage variation is especially daunting because it happens rapidly. We measure and characterize voltage variation in a running Intel R © CoreTM2 Duo processor. By sensing on-die voltage as the processor runs single-threaded, multithreaded, and multi-program workloads, we determine the average supply voltage swing o...

متن کامل

Hardware/software Techniques for Memory Power Optimizations in Embedded Processors

Power has become one of the primary design constraints in modern microprocessors. This is all the more true in the embedded domain where designers are being pushed to create faster processors that operate for long periods of time on a single battery. It is well known that the memory sub-system is responsible for a significant percentage of the overall power dissipation. For example, in the Stro...

متن کامل

Thermal-Aware Scheduling in Multicore Systems Using Chaotic Attractor Predictors

Modern processors crudely manage thermal emergencies through Dynamic Thermal Management (DTM), where the processor monitors the die temperature and dynamically adjusts the processor voltage and frequency (DVFS) to throttle down the processor when necessary. However, DVFS tends to yield marked degradation in both application performance and system reliability. Thus, pro-active scheduling techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003